Modulation of extracellular d-serine content by calcium permeable AMPA receptors in rat medial prefrontal cortex as revealed by in vivo microdialysis.

نویسندگان

  • Sayuri Ishiwata
  • Asami Umino
  • Masakazu Umino
  • Kazuko Yorita
  • Kiyoshi Fukui
  • Toru Nishikawa
چکیده

In mammalian brains, d-serine has been shown to be required for the regulation of glutamate neurotransmission as an endogenous co-agonist for the N-methyl-d-aspartate type glutamate receptor that is essential for the expression of higher-order brain functions. The exact control mechanisms for the extracellular d-serine dynamics, however, await further elucidation. To obtain an insight into this issue, we have characterized the effects of agents acting at the α-amino-3-hydroxy-5-methyl-4-isoxazolepropioinic acid (AMPA) type glutamate receptor on the extracellular d-serine contents in the medial prefrontal cortex of freely moving rats by an in vivo microdialysis technique in combination with high-performance liquid chromatography with fluorometric detection. In vivo experiments are needed in terms of a crucial role of d-serine in the neuron-glia communications despite the previous in vitro studies on AMPA receptor-d-serine interactions using the separated preparations of neurons or glial cells. Here, we show that the intra-cortical infusion of (S)-AMPA, an active enantiomer at the AMPA receptor, causes a significant and concentration-dependent reduction in the prefrontal extracellular contents of d-serine, which is reversed by an AMPA/kainate receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide disodium salt, and a calcium permeable AMPA receptor antagonist, 1-naphthyl acetyl spermine. The d-serine reducing effects of (S)-AMPA are augmented by co-infusion of cyclothiazide that prevents AMPA receptor desensitization. Our data support the view that a calcium permeable AMPA receptor subtype may exert a phasic inhibitory control on the extracellular d-serine release in the mammalian prefrontal cortex in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrigendum: Modulation of AMPA receptor mediated current by nicotinic acetylcholine receptor in layer I neurons of rat prefrontal cortex

Layer I neurons in the prefrontal cortex (PFC) exhibit extensive synaptic connections with deep layer neurons, implying their important role in the neural circuit. Study demonstrates that activation of nicotinic acetylcholine receptors (nAChRs) increases excitatory neurotransmission in this layer. Here we found that nicotine selectively increased the amplitude of AMPA receptor (AMPAR)-mediated ...

متن کامل

Evidence for Tonic Control by the GABAA Receptor of Extracellular D-Serine Concentrations in the Medial Prefrontal Cortex of Rodents

Endogenous D-serine is a putative dominant co-agonist for the N-methyl-D-aspartate glutamate receptor (NMDAR) in the mammalian forebrain. Although the NMDAR regulates the higher order brain functions by interacting with various neurotransmitter systems, the possible interactions between D-serine and an extra-glutamatergic system largely remain elusive. For the first time, we show in the rat and...

متن کامل

Modulation of AMPA receptor mediated current by nicotinic acetylcholine receptor in layer I neurons of rat prefrontal cortex

Layer I neurons in the prefrontal cortex (PFC) exhibit extensive synaptic connections with deep layer neurons, implying their important role in the neural circuit. Study demonstrates that activation of nicotinic acetylcholine receptors (nAChRs) increases excitatory neurotransmission in this layer. Here we found that nicotine selectively increased the amplitude of AMPA receptor (AMPAR)-mediated ...

متن کامل

Morphine releases glutamate through AMPA receptors in the ventral tegmental area: a microdialysis study in conscious rats

Drug addiction has developed to a social illness. Changes in glutamate transmission have been recorded by the repeated administration of addictive drugs into VTA. In this investigation, In vivo microdialysis was used to study the effects of morphine on glutamate release from the ventral tegmentum area (VTA) in freely moving rats. Rats were anesthetized with chloral hydrate (350 mg/kg, i.p.) and...

متن کامل

Stimulation of alpha1-adrenoceptors in the rat medial prefrontal cortex increases the local in vivo 5-hydroxytryptamine release: reversal by antipsychotic drugs.

Pyramidal neurons of the medial prefrontal cortex (mPFC) project to midbrain serotonergic neurons and control their activity. The stimulation of prefrontal 5-HT2A and AMPA receptors increases pyramidal and serotonergic cell firing, and 5-hydroxytryptamine (5-HT) release in mPFC. As the mPFC contains abundant alpha1-adrenoceptors whose activation increases the excitability of pyramidal neurons, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The international journal of neuropsychopharmacology

دوره 16 6  شماره 

صفحات  -

تاریخ انتشار 2013